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a b s t r a c t

Using a generalized form of Bloch's theorem, we derive the dispersion relation of a
viscously damped locally resonant metamaterial modeled as an infinite mass-in-mass
lumped parameter chain. For comparison, we obtain the dispersion relation for a statically
equivalent Bragg-scattering mass-spring chain that is also viscously damped. For the two
chains, we prescribe identical damping levels in the dashpots and compare the damping
ratio associated with all propagating Bloch modes. We find that the locally resonant
metamaterial exhibits higher dissipation throughout the spectrum which indicates a
damping emergence phenomena due to the presence of local resonance. This phenom-
enon, which we define as “metadamping”, provides a new paradigm for the design of
material systems that display both high damping and high stiffness. We conclude our
investigation by quantifying the degree of metadamping as a function of the long-wave
speed of sound in the medium or the static stiffness.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Damping is an intrinsic property of materials and when present in a structural configuration may play a significant
role in shaping the structural response. While in certain applications—such as energy harvesting—dissipation is not
desired, its maximization is sought in numerous avenues, including vibration suppression, shock resistance, and
acoustic absorption. From a design perspective, a highly constraining trade-off in these latter applications is that an
increase in the intensity of damping in the materials employed commonly appears at the expense of stiffness, or
mechanical load-bearing capacity. For example, elastomeric materials are more dissipative than metallic materials but
are much less stiff. Hence, the development of concepts in material design that lead to both high levels of dissipation
and stiffness has been an active area of research. Lakes et al. [1], for example, demonstrated that composite materials
incorporating constituents in a metastable state simultaneously exhibit elevated values of viscoelastic stiffness and
damping. Research on shape memory alloys has also presented an example, showing that hysteretic motion of
interfaces at the thermoelastic martensitic phase leads to realization of high damping capacity without reduction in
overall stiffness [2]. Chung [3] presents a review of other approaches for enhancing damping-stiffness capacity of
materials through composite materials engineering.

In this Communication, we propose periodic acoustic metamaterials (AMs) with local resonance properties [4] as a
candidate for materials that can be designed to exhibit high levels of dissipation while retaining high stiffness. An
underlying principle is that vibration attenuation due to damping is most profound at resonance frequencies, as is well
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known in the field of structural dynamics. Here we draw an analogy and explore the effect of resonance on dissipation in
the context of what we may refer to as “material dynamics”. In this setting, we examine the level of dissipation not only
near a resonance frequency but across the entire frequency-wavenumber spectrum of the material's dispersion curves.

To assess the degree of dissipation in a locally resonant AM, we first generalize Bloch's theorem to incorporate complex
frequencies—which is necessary to allow for proper treatment of temporally attenuating waves.1 We then derive the frequency
and damping ratio band structures of a damped AM and compare the characteristics of the latter with those of a
corresponding statically-equivalent phononic crystal (PC), i.e., another type of periodic material that does not possess local
resonances yet has the same long-wave propagation characteristics. In this analysis, we seek to determine the possibility of an
“emergence of damping” in the AM. The concept of emergence in complex systems theory and other disciplines stems from
the widely held notion that for certain systems “the whole is greater than the sum of its parts” [6]. Although emergence is
usually associated with a lack of predictability, the concept may also be relevant to systems whose properties are predictable in
principle, yet unforeseen a priori [7]. In relation to chemistry and materials science, often the emerging whole stems from the
structure while the parts is associated with the composition. From a similar perspective, our aim is to demonstrate emergence
in the context of how local resonance within the internal structure, of a material, leads to enhanced dissipation, over all
frequencies and wavenumbers, when compared to other materials with equivalent static properties and the same level of
prescribed damping. We emphasize that the practical implications of damping emergence are profound since this
phenomenon provides a novel paradigm towards the design of materials with both high damping and high stiffness.

2. Acoustic metamaterial and phononic crystal: Models and equations of motion

By considering lumped masses, springs, and viscous damping (dashpot) elements, we construct a simple one-
dimensional (1D) model of a damped diatomic AM (represented by a “mass-in-mass” configuration [8] as shown in
Fig. 1a), and for comparison we also examine a corresponding 1D model of a damped diatomic PC (represented by a “mass-
and-mass” configuration as shown in Fig. 1b). This choice of simple lumped parameter models allows us to focus on the
underlying damping emergence phenomenon free from the distraction of irrelevant system complexities. Both models
represent a unit cell that is infinitely repeated in both directions.

Considering unit cell periodicity, the set of homogeneous equations describing the motion of each mass in the AM model
shown in Fig. 1a is obtained as follows (where the AM superscript is omitted for brevity):

m1 €u
j
1 þ c1ð2 _uj

1− _uj−1
1 − _ujþ1

1 Þ þ c2ð _uj
1− _uj

2Þ þ k1ð2uj
1−u

j−1
1 −ujþ1

1 Þ þ k2ðuj
1−u

j
2Þ ¼ 0;

m2 €u
j
2 þ c2ð _uj

2− _uj
1Þ þ k2ðuj

2−u
j
1Þ ¼ 0; (1)

where uj
α is the displacement of mass α in an arbitrary jth unit cell. In general, a unit cell and its neighbors may be identified

by j+n, where n¼0, −1, 1 denotes the present, previous, and subsequent unit cell, respectively. Similarly for the PC model
shown in Fig. 1b, the equations of motion corresponding to the two masses are (where the PC superscript is omitted for
brevity) as follows:

m1 €u
j
1 þ ðc1 þ c2Þ _uj

1−c2 _u
j
2−c1 _u

j−1
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Fig. 1. Unit cells of statically-equivalent periodic chains consisting of masses, springs and viscous damping (dashpot) elements: (a) acoustic metamaterial
(mass-in-mass), (b) phononic crystal (mass-and-mass).

1 The original form of Bloch's theorem, which was developed for electronic band structure calculation [5], is sufficiently based on real frequencies.
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3. Generalized Bloch's theorem: Derivation of frequency and damping ratio dispersion curves

For each of the system of equations, Eqs. (1) and (2), we apply the generalized form of Bloch's theorem [9,10]

ujþn
α ðx; κ; tÞ ¼ ~Uαeiðκx

j
αþnκlÞþλt ; α¼ 1; 2; (3)

(where xjα ¼ jþ l for the AM model and xjα ¼ jþ αl=2 for the PC model) which represents the displacement of mass α in the
(j+n)th unit cell in the periodic chain, and where ~Uα is the wave amplitude, l is the unit-cell length, κ is the wavenumber and
λ is a complex frequency function that permits wave attenuation in time. In the limiting case of no damping, λ¼7 iω, and
the usual form of Bloch's theorem is recovered. Substituting Eq. (3) into the governing equations for both the AM and the PC
yields a characteristic equation of the form

λ4 þ aλ3 þ bλ2 þ cλþ d¼ 0; (4)

where for the AM,

a¼ ðm1 þm2Þc2 þ 2m2c1ð1−cos κlÞ
m1m2

;

b¼ ðm1 þm2Þk2 þ 2ðm2k1 þ c1c2Þð1−cos κlÞ
m1m2

;

c¼ 2ðc1k2 þ c2k1Þð1−cos κlÞ
m1m2

;

d¼ 2k1k2ð1−cos κlÞ
m1m2

; (5)

and for the PC,

a¼ ðm1 þm2Þðc1 þ c2Þ
m1m2

;

b¼ ðm1 þm2Þðk1 þ k2Þ þ 2c1c2ð1−cos κlÞ
m1m2

;

c¼ 2ðc1k2 þ c2k1Þð1−cos κlÞ
m1m2

;

d¼ 2k1k2ð1−cos κlÞ
m1m2

: (6)

We note that the form of each of c and d does not vary between the two models. Upon solving Eq. (4) for either the AM or
the PC, we obtain the general solution
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where

Q ¼ b2−3acþ 12d; (7b)

P ¼

2b3−9abcþ 27ðc2 þ a2dÞ−72bdþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
3

r
: (7c)

The distinction between the solution of the two systems arises upon the appropriate substitution of a and b as given in
Eqs. (5) and (6), respectively.

The roots we obtain from Eq. (7) may also be expressed as

λsðκÞ ¼−ξsðκÞωsðκÞ7 iωds ðκÞ; s¼ 1;2; (8)

where s represents the branch number. Hence from Eqs. (7) and (8), we can obtain the frequency, ωds
(κ), and damping ratio,

ξs(κ), relations. Specifically, from the complex solution, λs(κ), we directly extract ωds
(κ)¼ Im[λs(κ)] and ξs(κ)¼−Re[λs(κ)]/Abs

[λs(κ)] for each of the two dispersion branches.

4. Metadamping phenomenon

Now we examine the frequency and damping ratio dispersion curves of both systems for the following parameter ratios:

mAM
2 =mAM

1 ¼mPC
2 =mPC

1 ¼ 5 and kAM2 =kAM1 ¼ kPC2 =kPC1 ¼ 1=5: Furthermore, we set mAM
1 ¼mPC

1 ¼ 1; ωPC
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kPC2 =mPC

2

q
¼ 100 and l¼1.

All the parameters here and elsewhere in this work may be read in any consistent system of physical units. To enable proper
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comparison, we select the value of ωAM
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAM2 =mAM

2

q
in such a manner as to render both systems statically equivalent, that

is, both systems having the same long-wave sound speed, or slope of the first frequency dispersion branch as the
wavenumber tends to zero, cstat ¼ lim

κ-0
ωd1=κ: With the chosen parameters for the PC, cstat¼83.33. The AM is set to exhibit the

same value of long-wave sound speed when ωAM
0 ¼ 40:90. Concerning the damping prescription, we define η1 ¼ cPC1 ¼ cAM1

and η2 ¼ cPC2 ¼ cAM2 . For the special case of the two dashpots in each system having the same prescribed damping value, we
define η¼η1¼η2 (i.e., cAM2 =cAM1 ¼ cPC2 =cPC1 ¼ 1).

The first set of results is shown in Fig. 2. The left hand side (LHS) of Fig. 2a displays the frequency band structure of
the AM for three example cases: no damping (η¼0), low damping (η¼40), and high damping (η¼80), and the LHS of
Fig. 2b and c displays the damping ratio band structures for the low damping and high damping cases, respectively. In
the damping ratio diagrams, we have added a third curve to represent the summation of the damping ratio values for
the acoustic and optical branches, i.e., ξsumðκÞjr ¼ ξ1ðκÞjr þ ξ2ðκÞjr ; where r¼AM or PC. On the right hand side (RHS) of
Fig. 2, the matching diagrams for the corresponding PC are shown. The results show that there are shifts in the
frequency band diagrams (greater in the optical branches) due to the presence of damping, and that these shifts are
more profound in the AM. This behavior manifests itself in a most remarkable manner in the damping ratio diagrams.
Despite the static equivalence and equally prescribed value of the viscous damping constant, η, we observe in Fig. 2b
and c that the AM exhibits higher damping ratio values (i.e., higher dissipation) across the entire Brillouin zone (BZ), for
both the acoustic and optical branches. This is an indication of a considerable amplification, or emergence, of
dissipation in the AM compared to its PC counterpart. Moreover, this emergence is present for all propagating Bloch
modes and not only for modes close to the band gap. Consequently, even though the band gap of the AM might be
smaller in width, as in our case, the overall wave attenuation performance when viewed across the entire spectrum is
more favorable compared to the PC. This is because outside a band gap, attenuation of propagating modes may only be
realized via damping.
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Fig. 2. (a) Frequency band structure; for each branch, the top set of curves represent no damping, the intermediate set represents η¼40 and the bottom set
represents η¼80. Damping ratio band structure corresponding to (b) η¼40 and (c) η¼80. In all sub-figures, the LHS corresponds to AM and the RHS
corresponds to statically equivalent PC.
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To quantify this difference in damping ratio values, we introduce a wavenumber-dependent damping emergence metric,
ZlðκÞ ¼ ξlðκÞjAM−ξlðκÞjPC; where l¼1,2 or sum. In Fig. 3, we show Zl(κ), its cumulative value

Zcum
l ðθÞ ¼

Z θ

0
Zldκ; l¼ 1;2 or sum; θ∈½0; π�; (9)

and its total value, Ztot
l ¼ Zcum

l ðπÞ for our example AM and PC pair—displaying the data for the acoustic branch (l¼1), the
optical branch (l¼2), and the summation of the two branches (l¼sum) in Fig. 3a–c, respectively (for η¼40 on the LHS and
η¼80 on the RHS). The results reveal significantly high values of Ztot

l which we may view as a measure of the intensity of
damping emergence. We also observe that Z24Z1 for all values of κ, in line with what we noted above. Fig. 4a shows that the
value of Ztot

l varies linearly with the level of damping, η. Here the subfigure terminates when the value of the damping ratio
of the AM optical branch is no longer limited to unity (i.e., critical damping) within the BZ. This occurs at η¼165.57. Fig. 4b
focuses on isolating the role of cAM1 versus cAM2 in the creation of damping emergence (considering that only cAM2 is associated
with the prescribed damping level of the local resonator in the AM). This is done by varying η2 while keeping η1¼0 and
comparing with the case of varying η1 while keeping η2¼0. The case of varying η (i.e., varying η1 and η2 simultaneously while
keeping them equal) is also plotted for reference. A more representative reference curve is one that corresponds to varying
η/2, as it directly correlates with the first two curves since the total amount of prescribed damping among the two dashpots
is the same for each value of ηn. As expected, it is shown that the impact of cAM2 is higher than that of cAM1 , although not by a
significant degree. This suggests that prescribed damping levels even away from local resonators in an AM are bound to
influence damping emergence.

Returning to the driving objective of realizing materials that exhibit increased damping without deterioration of static
stiffness, we repeat our calculations for a range of cstat values. We do so by keeping all the parameters as in the previous
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example except for ωPC
0 and ωAM

0 . Changing ωPC
0 causes cstat to vary, and, in turn, ωAM

0 is adjusted accordingly to keep both
systems statically equivalent. Throughout this process, the ratio ωAM

0 =ωPC
0 stays constant, and hence the relative size and

location of the undamped band gap between one system and the other also remains constant. In Fig. 5, we show the
relationship between the level of dissipation (i.e., actual damping) versus cstat for the AM and the PC. For this purpose,
we calculate the total damping ratio over both branches, ξtotsum; which we obtain by integration, i.e., ξtotsum ¼ ξcumsumðπÞ; where

ξcumsumðθÞ ¼
Z θ

0
ξsumdκ; θ∈½0; π�: (10)

To provide further insight, we calculate an effective static Young's modulus, Estat, which we obtain by considering an
effective elastic rod, with a cross-sectional area equal to unity. Using the standard rod properties of E, the Young's modulus,
ρ, the density, and c¼

ffiffiffiffiffiffiffiffiffi
E=ρ;

p
the speed of sound in the rod, we derive Estat≈ðmr

1 þmr
2Þc2stat; where r¼AM or PC, for each of

our periodic chains. We clearly observe in Fig. 5 that for a given value of long-wave speed, or effective static Young modulus,
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the AM exhibits a substantial increase in the value of ξtotsum; when compared to the PC. In other words, even though there is
still a trade-off between damping and stiffness, the level of dissipation in the AM increases without sacrifice of stiffness.
Shaded in gray is the region of damping emergence, or “metadamping region”. We note that the level of metadamping
(represented by the height of the shaded region) is highest at low levels of cstat (i.e., compliant materials) and reduces in
value as cstat increases to represent more stiff materials. The intensity of metadamping, or area of the metadamping region,
increases with η, or η1 and η2 (as we may deduce from Fig. 4 and as elaborately demonstrated in Fig. 6); however, for a given
η, or η1 and η2, this area may be increased further upon optimization of the periodic chain parameters including the local
resonator parameters [11].

5. Conclusions

In conclusion, we have demonstrated the concept of damping emergence, or metadamping, due to the presence of local
resonance. This finding has far reaching implications on the design of materials for numerous applications that require the
reduction, mitigation, or absorption of vibrations, shock, and/or sound. While the analysis has been presented in the context
of simple mass-spring-dashpot periodic chains, it can be readily extended to practical realizations of locally resonant
acoustic metamaterials. Examples include material structures that utilize: heavy inclusions with compliant coatings [4],
soft inclusions [12], split-resonators [13], inertial amplifiers [14], pillars [15,16], holey cylinders [17] and suspended
masses [18]. The two underlying features needed are (1) the presence of locally resonant elements and (2) the presence of at
least one constituent material phase or component that exhibits damping (e.g., by utilizing viscoelastic materials, friction at
material interfaces, etc.). It is the combination of these two features that forms a prerequisite for metadamping. As such,
other concepts for enhancing damping while retaining stiffness (such as those described in Refs. [1–3]) may be applied in
conjunction with the inclusion of local resonators leading to an additive effect. While the perspective in this study has been
that metadamping is a desired phenomenon (i.e., for the applications noted above), conversely, there is another category of
metamaterial-based applications where metadamping is not desired (such as subwavelength energy harvesting, waveguid-
ing or focusing). For this latter category, however, an awareness and understanding of the phenomenon is necessary for
achievement of optimal design. Finally, while the concept of metadamping has been presented in the context of a
mechanical problem, in principle it is also applicable to other disciplines in materials physics that involve both resonance
and dissipation.
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